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topological phase boundaries exhibit unusual eff ects, 
known as edge states, that allow unidirectional propa-

gagion of photons—even around corners—despite 

physical imperfections in the medium. And experiments 

with topological photonic systems are beginning to 

point to new approaches to the design of lasers, optical 

components and sources of quantum light.

Topological phases and edge states
Broadly speaking, topology is a branch of mathematics 

involving geometric and spatial properties that remain 

unchanged under continuous deformation. In the con-

text of photonics, a system’s topology is mathematically 

defi ned by variations in the eigenvectors of the system’s 
Hamiltonian, H(k), across all allowed values of the 

wavevector k (see infographic below). 

A simple example of topological states can be seen 

in a photonic system involving dielectric rods (or ring 

resonators) arranged in a 2-D honeycomb patt ern—an 
analog of the so-called Haldane model of a topologi-

cal insulator in an electronic system. In the photonic 

latt ice, the unit cell involves two sites (A and B in the 
infographic). The photonic fi eld is concentrated on the 
dielectric rods due to their high refractive index, and as 

a result of the evanescent fi eld coupling, photons can 
“hop” (or leak) from one site to another.

In this system, the Hamiltonian H(k) is a 2×2 matrix 

that describes the hopping between the A and B sublat-

tices, with eigenfunctions representing the fi eld strength 
and relative phase of photons on the sublatt ices. In a 
topologically trivial phase, only hops between nearest 

neighbors (A to B or B to A) are allowed. Topologically 
nontrival behavior can arise from a band gap induced 

by hopping among next-nearest neighbors (A to A and 

B to B). These A and B sublatt ices can also correspond to 
two diff erent light polarizations in a photonic crystal.

The topology of the band structure depends sensi-

tively on the magnitudes and phases of the parameters 

in H(k), and is a subtle eff ect. In particular, it can’t be 
determined simply by looking at the dispersion proper-

ties of the medium. Instead, determining the topology 

requires investigating how the photonic states behave 

globally for relevant values of k.

Physically, the implications of topological states 

emerge when we consider the case where a topologically 

trivial latt ice (in the honeycomb example, one that per-
mits hopping only among nearest neighbors) interfaces 

with a nontrivial latt ice (one that allows hopping among 
next-nearest neighbors)—a topological phase boundary. 

Both latt ices have similar energy bands, but their fi eld 
distributions are very diff erent. It is thus impossible 
to go smoothly from one latt ice to the other. Further, 
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Describing topological order: The Haldane model

Topologically trivial

Topologically nontrivial
2. The dynamics of the photonic 

system are described by the 
Hamiltonian H(k), a matrix 
characterized by the wavevector 
k. The photonic band 
structure (shown above for the 
honeycomb model) corresponds 
to the frequency eigenvalues, 
ω(k), of this matrix.

1. One model to illustrate a 
topological band structure is 
based on a honeycomb lattice, in 
which photons can hop between 
nearest neighbors (solid lines) or 
next-nearest neighbors (dashed 
lines) because of evanescent 
field coupling.

3. The eigenvectors of H(k) 
are two-component vectors 
representing the field strength 
and relative phase of photons 
on the A and B sublattices. 
They can be represented on the 
surface of a Bloch sphere, on 
which the latitude represents the 
relative field strength on the A 
and B sublattices. At the poles, 
the photonic field is entirely 
concentrated on a single site (A 
or B); at the equator, the two field 
amplitudes are equal.
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“Topological protection” against defects holds the key to the 
usefulness of topological properties in designing photonic 
components and systems.

while either side of the interface has a band gap, the 
band gap disappears at the interface—which implies 
that photons can travel along that interface.

These interface states, or edge states, are characteris-
tic of topological systems. More important, it turns out 
that the edge states are very robust against disorder. 
For instance, in the honeycomb example, the ability for 
photons to “hop around” a defect means that a missing 
dielectric rod cannot change the photon propagation 
direction. This “topological protection” against defects 
holds the key to the usefulness of topological proper-
ties in designing photonic components and systems.

Creating topological photonic platforms
The example above gives an idea of what a topological 
band structure means, and how it gives rise to protected 
edge states. But under which physical conditions can 
such topological features be realized?

To understand this, consider another key example of 
an electronic topological system: the integer quantum 

Hall eff ect (IQHE). In a system in which electrons are 
confi ned on a 2-D plane, with a uniform magnetic fi eld 
oriented perpendicular to the plane (a common scenario 
in semiconductor heterostructures), electrons within 
the plane will experience a cyclotron motion due to 
the Lorentz  forces exerted by the magnetic fi eld (see 
infographic below).

The net charge carried by electrons thus vanishes 
in the plane’s bulk, because cyclotron electrons are 
confi ned to circular orbits and don’t contribute to the 
current. At the plane edges, however, the electrons can-
not complete their orbits and bounce off  the edge. The 
boundary between the topologically nontrivial plane 
and the topologically trivial vacuum surrounding it thus 
carries current owing to these skipping orbits—and, 
indeed, carries current in opposite directions at oppo-
site edges of the sample, allowing current to propagate 
unidirectionally around the plane edges.

In the integer quantum Hall eff ect, it is the magnetic 
fi eld—a gauge fi eld—that gives rise to topological eff ects. 

5. Topologically protected 
edge states arise at 
the phase boundary 
between topologically 
trivial and topologically 
nontrivial regions.

4. The system’s topology is described by the eigenvectors 
at the special symmetry points K and K’ in the Brillouin 
zone. If only the nearest-neighbor hops are allowed, the 
eigenfunctions associated with K and K’ visit the same pole 
of the Bloch sphere and the system is topologically trivial. 
If the next-nearest-neighbor hops are allowed as well, the 
field distribution is very different; the eigenfunctions visit 
different poles and the system is topologically nontrivial. 

A A

B B

Defect

6. In the integer quantum Hall 
effect, edge states between 
the plane and the vacuum 
surrounding it allow current 
to flow unidirectionally around 
the plane edge (see text).

Topological Trivial

Global features can not be 
affected by local perturbation 



Synthetic Magnetic Field 

MH, Demler, Lukin, Taylor  Nature Physics  7, 907 (2011)

Earlier work with magnetic field for microwave: 


Haldane PRL (2008), Soljacic et al. Nature (2009)  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Experimental realization of the gauge field 
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Robustness against an introduced disorder

missing resonator

First observation of photonic topological edge states 

MH, S. Mittal et al. Nature Photonics 7, 1001 (2013)


Rechtsman et al. Nature (2013)



What’s behind this robustness? 

How can one characterize and measure it?



                             MH, PRL 112, 210405 (2014)

see also: Ozawa et al. PRL 2014, Bardyn et al., Y. Chong 

•  Quantum Hall effect: Topological 
orders manifest themselves as integer 

prefactors in conductance 

• What is the manifestation of this integer 
order in a photonic system? 

Topological invariants in photons
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Experimental realization
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An “optical Möbius strip.”  [Image: Dan Curticapean, University of Applied Sciences Offenburg, 
Germany; 1st Place, OPN 2011 Photo Contest]

S. Mittal, W. DeGottardi, and M. Hafezi  
Optics and Photonics News, 29 (5), 36-43 (2018)

Topological Photonics 

T. Ozawa, H. M. Price, A. Amo, N. 
Goldman, M. Hafezi, L. Lu, M. 
Rechtsman, D. Schuster, J. Simon, 
O. Zilberberg, I. Carusotto 

arXiv:1802.04173



Quantum directions

Linear/weakly nonlinear Strong photon-
emitter  interaction  

Quantum transport of 
non-classical light 



Quantum transport in topological photonics systems

Theory: S. Mittal, V. Vikram Orre, and M. H., Optics Express (2016)
see also Rechtsman et al. Optima (2016) 
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Fig. 1. (a) Schematic of a 2D lattice of coupled ring resonators implementing the integer
quantum-Hall model. Site resonators (black) are coupled using link resonators (grey). The
lattice is coupled to input and output waveguides. Edge states transport is confined along
the lattice boundary whereas the bulk states follow different paths through the bulk of the
lattice. A time-bin entangled photon pair is coupled to the lattice at input and the output
temporal correlations are examined. An example single photon temporal wavefunction and
the two-photon correlation function is shown at the input and the output. (b) A vertical
shift of link resonator introduces direction dependent hopping phase and hence synthetic
magnetic field for photons. Photons hopping along right experience a longer path and hence
an extra phase compared to photons hopping along left. (c) Single-photon transmission
spectrum (solid red line) for a pure 8×8 lattice. CW, CCW Edge and bulk bands are shaded
in green, red and blue, respectively. In this paper, we use the input/output coupling rate to
be same as the coupling rate J between site resonators.

where ω0 is the ring resonance frequency, J is the coupling rate between neighboring lattice sites
and φ is the synthetic magnetic flux threading a single plaquette. â†

x,y and âx,y are the photon
creation and annihilation operators, respectively, at the lattice site (x,y). We have specifically
chosen the Landau gauge where the magnetic phase is associated only with hopping along
x-direction and it is a linear function of the row index y. For simplicity, we choose ω0 = 0.
Moreover, to elucidate the topological protection of edge states against disorder, we neglect
the effect of loss in the resonators which can lead to decoherence of the entangled state, in
addition to disorder. Also, in experimental realization of this system, the effect loss is very
small compared to that of disorder [4, 20].

Figure 1(c) shows the simulated single-photon transmission spectrum for a 8×8 lattice, with
a magnetic flux φ = 2π

4 per plaquette. The transmission spectrum is divided into bulk bands
separated by edge bands [24]. The edge bands (shaded in green and red) are associated with
topologically non-trivial edge states circulating clockwise (CW) and counterclockwise (CCW)
along the system boundary. On the other hand, states in the bulk band (shaded in blue) occupy
the bulk of the lattice [3, 4].

At the input of this lattice, we couple a time-bin entangled two-photon state of the form
|ψ⟩ =

∫ ∞
− ∞

∫ ∞
− ∞ dt1dt2ψ(t1, t2; te, tl)â†(t1)â†(t2) |0⟩ ,where(te) and (tl) correspond to the early

and late time bins in which the photons could arrive and â†(t) is the photon creation
operator at time t. ψ(t1, t2; te, tl) is the two-photon temporal wavefunction and is symmetric
under exchange of photons. Note that both the photons are centered around the same carrier
frequency and have same polarization, in the plane of ring resonators. Here, we consider
the maximally entangled states - the Bell states. For example, the Ψ+ state is written as
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time, a two-photon state can be written as

|2i =
Z

dx1dx2 (x1, x2; t)â
†(x1)â

†(x2)|0i, (3)

where  (x1, x2; t) is the corresponding wavefunction. Depending on the relative positions of pho-
tons, in a given snapshot, the wavefunction can be represent bunched to anti-bunched photons. In
fact, the time-entangled (path-entangled) information can be obtained by binning such a wavefunc-
tion. Based on our preliminary simulations, we expect that the two-photon wave function will be
preserved in a chiral channel (e.g. edge band), in contrast to the non-chiral and disordered systems,
where multiple scatterings can dramatically modify the form of the two-photon wavefunction.

To generate these correlated photon pairs, we use Type II spontaneous parametric down con-
version (SPDC) process in a PPKTP crystal. The crystal is pumped with a pulsed Ti-Sapph laser
around 780 nm (tunable) to yield correlated photon pairs at all frequencies, satisfying the energy
conservation and phase matching condition. This wide spectrum of photon pairs is then filtered
using a high-resolution monochromator to give degenerate photon pairs at around 1560 nm. By
tuning the Ti-Sapph laser output and heating the PPKTP crystal, we can tune the center wavelength
of the degenerate photon pairs.
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Oven
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at 1560nm

PBS

Delay Line
HWP

Free Space to 
Fiber Coupling

APD

Post Selection 
and processing 

Device

Electronics

Fiber to Device 
Coupling

Horizontal

Vertical

Hor

Figure 9: Schematic of the two-photon transport experimental
setup. HWP: half-wave plate, PBS: polarization beam splitter.

In order to achieve an arbitrary
two-photon wavefunction, we vary
the delay between two photons to
control their interaction in the lattice
of coupled resonators. Fo that, we
use Type II SPDC to generate pho-
ton pairs with orthogonal polariza-
tions. We use a polarization beam
splitter (PBS) to split the two polar-
izations and delay the vertical polar-
ization with respect to the horizon-
tal. We then use a half wave plate
(HWP) to rotate the vertical polariza-
tion to horizontal, the only polariza-
tion which our ring resonator waveg-
uides support. The two-photon states
with a mutual delay are then com-
bined using a beam combiner and
coupled to an optical fiber. This fiber is coupled to the resonator lattice using grating couplers.
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Fig. 2. (a) Time-correlation Γ(t1, t2) for Ψ+ input state, with σ = 10 T0 and delay τ = 30 T0,
where T0 = 1/J. (b,c) Simulated correlation function at the output port of a 8×8 lattice for
CCW and CW edge states, respectively. The delay incurred in the edge states shifts the
correlation function diagonally but correlation of the input state is preserved. The centres
of the two time-bins are marked with dashed yellow lines. (d-f) Results for the input state
Φ+ . Insets show the transmission spectrum and the path followed by edge states. Γ(t1, t2)
is normalized such that the maximum is unity.

|Ψ+ ⟩ = 1√
2 (|e⟩1 |l⟩2 + |l⟩1 |e⟩2) ,where|e⟩1,2 and |l⟩1,2 represent the single-photon states in early

and late time bins, respectively. It corresponds to a situation when one photon arrives in the early
time-bin (te) and the other in the late bin (tl). The early/late time bins can be considered as "0/1"
logic values of a qubit. Similarly, the other two Bell states symmetric under exchange of photons
are

∣∣Φ+
〉
=

1√
2
(|e⟩1 |e⟩2 + |l⟩1 |l⟩2) (2)

∣∣Φ−〉 = 1√
2
(|e⟩1 |e⟩2 − |l⟩1 |l⟩2) . (3)

These are the symmetric and antisymmetric combinations of the two scenarios when both the
photons arrive early or both arrive late. The fourth Bell state Ψ− is not considered here because
it is antisymmetric under exchange of photons. These time-bin entangled two-photon states can
be realized in various systems, for example, using spontaneous parametric down conversion or
quantum dots [21–23].

Assuming the input single-photon temporal wavefunctions are Gaussian,
the two-photon wavefunction for Ψ+ state is given by Ψ+ (t1, t2; te, tl) =

A
[
exp

(
−(t1−te)2

2σ2

)
exp

(
−(t2−tl)2

2σ2

)
+ exp

(
−(t1−tl)2

2σ2

)
exp

(
−(t2−te)2

2σ2

)]
,whereσ characterizes

the single-photon temporal pulsewidth and A is the normalization factor. Similarly, we can
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Fig. 3. (a-d) Time-correlation function at the input and the output of the lattice for Ψ+

state and three different input frequencies in the bulk band, ω = (−0.52,−0.4,0.52)J.
The profile is dictated largely by the input excitation frequency and the two photons can
bunch at the output even when they are well separated at the input. (e-h) Correlation for
the separable state corresponding to the input frequencies in (a-d). For the separable state,
the bunching is much less than that for the entangled state. (i-p) Simulation results for Φ+

and the corresponding separable state, where the photons are bunched at the input and can
anti-bunch at the output after propagating through bulk states. These results show that the
quantum state of two entangled photons is more fragile than the separable state.

to different input ports and quantum walk in the system leads to spatial bunching/anti-bunching
of photons at the output, depending on the choice of input excitation ports and relative phase
between them. In contrast, our system has a single input and a single output port. But, each
coupling region between the resonators is a beam-splitter and therefore, the transport of photons
from input to the output by hopping this array of beam-splitters can be considered as a 2D spatial
quantum walk of two photons. These spatial correlations of the two-photon quantum walk in
the lattice manifest as temporal correlations at the output port.
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Topological boson sampling?
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Fig. 1. (a) Schematic of a 2D lattice of coupled ring resonators implementing the integer
quantum-Hall model. Site resonators (black) are coupled using link resonators (grey). The
lattice is coupled to input and output waveguides. Edge states transport is confined along
the lattice boundary whereas the bulk states follow different paths through the bulk of the
lattice. A time-bin entangled photon pair is coupled to the lattice at input and the output
temporal correlations are examined. An example single photon temporal wavefunction and
the two-photon correlation function is shown at the input and the output. (b) A vertical
shift of link resonator introduces direction dependent hopping phase and hence synthetic
magnetic field for photons. Photons hopping along right experience a longer path and hence
an extra phase compared to photons hopping along left. (c) Single-photon transmission
spectrum (solid red line) for a pure 8×8 lattice. CW, CCW Edge and bulk bands are shaded
in green, red and blue, respectively. In this paper, we use the input/output coupling rate to
be same as the coupling rate J between site resonators.

where ω0 is the ring resonance frequency, J is the coupling rate between neighboring lattice sites
and φ is the synthetic magnetic flux threading a single plaquette. â†

x,y and âx,y are the photon
creation and annihilation operators, respectively, at the lattice site (x,y). We have specifically
chosen the Landau gauge where the magnetic phase is associated only with hopping along
x-direction and it is a linear function of the row index y. For simplicity, we choose ω0 = 0.
Moreover, to elucidate the topological protection of edge states against disorder, we neglect
the effect of loss in the resonators which can lead to decoherence of the entangled state, in
addition to disorder. Also, in experimental realization of this system, the effect loss is very
small compared to that of disorder [4, 20].

Figure 1(c) shows the simulated single-photon transmission spectrum for a 8×8 lattice, with
a magnetic flux φ = 2π

4 per plaquette. The transmission spectrum is divided into bulk bands
separated by edge bands [24]. The edge bands (shaded in green and red) are associated with
topologically non-trivial edge states circulating clockwise (CW) and counterclockwise (CCW)
along the system boundary. On the other hand, states in the bulk band (shaded in blue) occupy
the bulk of the lattice [3, 4].

At the input of this lattice, we couple a time-bin entangled two-photon state of the form
|ψ⟩ =

∫ ∞
− ∞

∫ ∞
− ∞ dt1dt2ψ(t1, t2; te, tl)â†(t1)â†(t2) |0⟩ ,where(te) and (tl) correspond to the early

and late time bins in which the photons could arrive and â†(t) is the photon creation
operator at time t. ψ(t1, t2; te, tl) is the two-photon temporal wavefunction and is symmetric
under exchange of photons. Note that both the photons are centered around the same carrier
frequency and have same polarization, in the plane of ring resonators. Here, we consider
the maximally entangled states - the Bell states. For example, the Ψ+ state is written as
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Photon pair genration 

(1) High yield 

(2) High quality (separability of photons)

(3) Photons should be generated at the design parameters

Challenges:

 (!i,!s) =  i(!i) s(!s)

1D array of ring resonators 

R. Kumar, et. al., Nat. Comm. (2014)

Davanco, et. al., APL. (2014)

Spontaneous four-wave mixing 

• Photons come at random frequencies 

• The spectrum changes from chip to chip

Can topological protection help us?
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• Signal/Idler spectrum confined only to edge 

• Linear Dispersion: Enhanced interaction


• Robustness against disorder

Pump SignalIdler

Mittal et. al., arXiv 1709.09984

see also a theory proposal for Topological amplifier
Peano, Houde, Marquardt, Clerk PRX (2016)

Shi, Cirac, Kimble PNAS (2017)

Robust generation of photon pairs

Fair comparison: trivial/topological

take the same material, fabrication process, 
same condition, e.g. gain, pump intensity  
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tion, the 2D system achieves much higher similarity than the trivial
1D system. The results are averaged over 50 realization of disorder.
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Fig. 1. (a) Schematic of a 2D lattice of coupled ring resonators implementing the integer
quantum-Hall model. Site resonators (black) are coupled using link resonators (grey). The
lattice is coupled to input and output waveguides. Edge states transport is confined along
the lattice boundary whereas the bulk states follow different paths through the bulk of the
lattice. A time-bin entangled photon pair is coupled to the lattice at input and the output
temporal correlations are examined. An example single photon temporal wavefunction and
the two-photon correlation function is shown at the input and the output. (b) A vertical
shift of link resonator introduces direction dependent hopping phase and hence synthetic
magnetic field for photons. Photons hopping along right experience a longer path and hence
an extra phase compared to photons hopping along left. (c) Single-photon transmission
spectrum (solid red line) for a pure 8×8 lattice. CW, CCW Edge and bulk bands are shaded
in green, red and blue, respectively. In this paper, we use the input/output coupling rate to
be same as the coupling rate J between site resonators.

where ω0 is the ring resonance frequency, J is the coupling rate between neighboring lattice sites
and φ is the synthetic magnetic flux threading a single plaquette. â†

x,y and âx,y are the photon
creation and annihilation operators, respectively, at the lattice site (x,y). We have specifically
chosen the Landau gauge where the magnetic phase is associated only with hopping along
x-direction and it is a linear function of the row index y. For simplicity, we choose ω0 = 0.
Moreover, to elucidate the topological protection of edge states against disorder, we neglect
the effect of loss in the resonators which can lead to decoherence of the entangled state, in
addition to disorder. Also, in experimental realization of this system, the effect loss is very
small compared to that of disorder [4, 20].

Figure 1(c) shows the simulated single-photon transmission spectrum for a 8×8 lattice, with
a magnetic flux φ = 2π

4 per plaquette. The transmission spectrum is divided into bulk bands
separated by edge bands [24]. The edge bands (shaded in green and red) are associated with
topologically non-trivial edge states circulating clockwise (CW) and counterclockwise (CCW)
along the system boundary. On the other hand, states in the bulk band (shaded in blue) occupy
the bulk of the lattice [3, 4].

At the input of this lattice, we couple a time-bin entangled two-photon state of the form
|ψ⟩ =

∫ ∞
− ∞

∫ ∞
− ∞ dt1dt2ψ(t1, t2; te, tl)â†(t1)â†(t2) |0⟩ ,where(te) and (tl) correspond to the early

and late time bins in which the photons could arrive and â†(t) is the photon creation
operator at time t. ψ(t1, t2; te, tl) is the two-photon temporal wavefunction and is symmetric
under exchange of photons. Note that both the photons are centered around the same carrier
frequency and have same polarization, in the plane of ring resonators. Here, we consider
the maximally entangled states - the Bell states. For example, the Ψ+ state is written as
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Quantum optics of chiral spin networks
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We study the driven-dissipative dynamics of a network of spin-1/2 systems coupled to one or more
chiral 1D bosonic waveguides within the framework of a Markovian master equation. We determine
how the interplay between a coherent drive and collective decay processes can lead to the formation
of pure multipartite entangled steady states. The key ingredient for the emergence of these many-
body dark states is an asymmetric coupling of the spins to left and right propagating guided modes.
Such systems are motivated by experimental possibilities with internal states of atoms coupled to
optical fibers, or motional states of trapped atoms coupled to a spin-orbit coupled Bose-Einstein
condensate. We discuss the characterization of the emerging multipartite entanglement in this
system in terms of the Fisher information.

PACS numbers: 03.67.Bg, 03.65.Yz, 42.50.Nn, 42.81.Dp

I. INTRODUCTION

The ability to engineer the system-bath coupling in
quantum optical systems allows for novel scenarios of dis-
sipatively preparing quantum many-body states of mat-
ter [1]. This is of interest both as a nonequilibrium con-
densed matter physics problem [2–8] and in the context of
quantum information [9–18]. In the present work we will
study open system quantum dynamics of chiral spin net-
works from a quantum optical perspective. The nodes
of these networks are represented by spin-1/2 systems,
whereas the quantum channels connecting them are 1D
waveguides carrying bosonic excitations [cf. Fig. 1(a) and
1(b)]. In addition, these waveguides provide the input
and output channels of our quantum network, allowing
for driving and continuous monitoring of the spin dy-
namics. In a quantum optical setting, such a network
can be identified by two-level atoms coupled to optical
fibers [19, 20] or photonic structures [21, 22]. As dis-
cussed in previous studies [23–25], the 1D character of
the quantum reservoir manifests itself in unique features
including long-range dipole-dipole interactions mediated
by the bath and collective decay of the two-level systems
as super- and subradiant decay.

The crucial aspect underlying our study below is the
assumption of a chiral character of the waveguides rep-
resenting the photonic channels. By chirality we mean
that the symmetry of emission of photons from the two-
level atoms into the right and left propagating modes
of the 1D waveguides is broken. This allows the forma-
tion of novel nonequilibrium quantum phases as steady
states of the open system dynamics in chiral quantum
spin networks. This includes the driven-dissipative evo-
lution as “cooling” to pure states of entangled spin clus-
ters, which play the role of quantum many-particle dark

⇤ hannes.pichler@uibk.ac.at

Figure 1. (Color online) Spin networks with chiral coupling
to 1D bosonic reservoirs. (a) Driven spins can emit photons
to the left and right propagating reservoir modes, where the
chirality of the system-reservoir interaction is reflected in the
asymmetry of the corresponding decay rates �L 6= �R. (b)
Spin network coupled via three different chiral waveguides
m = 1, 2, 3. Waveguide m = 1 couples the spins in the order
(1, 2, 3, 4), whereas m = 2 couples them in order (1, 3, 2, 4)
and m = 3 in order (2, 1, 4, 3). Note that only waveguides
without closed loops are considered in this work.

states, i.e. spin clusters decoupled from the bath. While
in Ref. [26] the formation of entangled spin clusters for
the (idealized) purely unidirectional waveguide has been
discussed, we have recently presented results that this
formation of pure entangled spin clusters is, in fact, the
generic case for chiral spin networks under fairly general
conditions [27]. It is the purpose of the present paper to
present an in depth study of this quantum dynamics and
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Topological photonic crystals
Goal: A compatible structure with solid-state emitters

 
Challenges:

★ Full bandgap in the bulk

★ E&M field confined in perp. direction to the slab

S. Barik et al. NJP (2016)

inspired by Wu and Hu (2015)
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in the (|p+i, |d+i)T basis. Similarly, in the (|p�i, |d�i)T basis we find

H� =

p
3

2
t2a (kx�x + ky�y) +

⇥
t2 � t1 +O(k2

x + k2
y)
⇤
�z. (17)

In both cases, we have performed a unitary transformation U = ei
⇡
2 �z . We note that in

the limit that the various honeycombs are completely decoupled, t2 ⇡ 0 and Eqs. (??)

and (??) reflect the fact that the p-states have a lower energy than the d-states. For

t1 = t2, H+ and H� are characterized by a Dirac cone spectrum. For t1 6= t2, the

spectrum acquires a gap of size |t1 � t2|.
Typically, the application of tight-binding is limited to electronic systems in which

electrons hop between weakly coupled atomic orbitals. However, the method is actually

much more broadly applicable. It turns out that any band can always be written in terms

of so-calledWannier functions [?]. Only if the various ‘atomic’ states are weakly coupled

will the Wannier functions bear a strong resemblance to the atomic wave functions, but

generally such Wannier functions may always be obtained. Moreover, the band structure

near � is tightly constrained by the symmetries of the system. In particular, the tight-

binding Hamiltonian H automatically accounts for the fact that the lattice and the

triangular holes exhibit a C6v symmetry. For t1 = t2, the Dirac cones are protected by

additional C3v symmetries.

7.4. Topology and Edge States

In the previous section, we showed that a honeycomb structure can be described

by a gapless Dirac Hamiltonian. When we introduce the lattice deformations, i.e.,

shrinking/expanding, a gap opens which can be described a mass term (m�z). Here, we

review the concept why the band inversion, i.e., changing the sign of mass, results in

having a topological edge at the boundary.

When the system is gapped, its topology can be characterized by a Chern number

for the pseudospins (±). A spin Chern number takes the form

C = C+ � C�, (18)

where C± = ±1
2sgn(m±), where m± are the masses for the two pseudo-spins [?]. Thus,

we have

C = sgn(t2 � t1). (19)

Topologically-protected edge modes will exist between gapped regions with di↵erent C 0s,

i.e., any place that the quantity t2 � t1 changes sign.

In order to understand the edge state structure, we begin by considering H+ with

a spatially varying mass. For concreteness, we consider the situation outlined in Fig.

4b in the main text As we will see, edge states are localized to domain walls for which

m(x) = t2 � t1 ⇡ 0. The edge states satisfy the Heisenberg equation of motion which,

for H+ [Eq. (??)], is the Dirac equation. The Dirac equation corresponding to H+ is

[�i~v (��x@x + �y@y) +m�z] = E , (20)

Exercise: Jackiw-Rebbi model in 2D
Mass inversion in Dirac equation leads to bound state

Two-Dimensionally Confined Topological Edge States in Photonic Crystals 16

where v =
p
3t1a0/2 and E is the energy of the eigenstate  .

Consider the geometry shown in Fig. 4(b) of the main text, which shows an area of

shrunken hexagons above expanded hegaons. The system is described by a mass which

depends only on y, i.e., m(x, y) = m(y) and m(0) = 0 with

dm

dy
< 0. (21)

In this case, the topologically protected solution

 (y) = � exp

✓
1

~v

Z y

0

m(y0)dy0
◆
, (22)

is an x-independent solution of the Dirac equation with zero energy where � is a two-

dimensional spinor. This is the celebrated Jackiw-Rebbi solution of the Dirac equation

with a spatially varying mass [?]. The sign in the exponent of  [Eq. (??)] ensures that

the solution is normalizable. The edge state decays exponentially for both y > 0 and

y < 0. The spinor � obeys

�x� = �. (23)

Thus,

� =
1p
2

 
1

1

!
, (24)

in the (|p+i, |d+i)T basis. The full edge mode is described by

 (x, y) =
1p
2

 
1

1

!
exp

✓
1

~v

Z y

0

m(y0)dy0
◆
eikxx. (25)

Again, plugging into the Dirac equation gives an energy dispersion

E(kx) = �~vkx. (26)

Since the group velocity is given by v = 1
~
@E
@kx

, this represents an edge state travelling

in the �x-direction. Indeed, we see that in Fig. 4(b-i) of the main text, the excitation

of the +-pseudospin leads to a left-moving edge state. Similarly, an edge state derived

from the H� channel (opposite pseudo-spin) would travel in the +x-direction.

7.5. Inversion of the Eigenstates

We examine the out-of-plane magnetic field eigenstates of the system at the symmetry

plane (z = 0) corresponding to the � point for the shrunken and expanded clusters. The

band structures for the shrunken and expanded cluster systems are shown in Fig. ??(a)

and (d) and are the same as Fig. 2(c) and (e) in the main text. The eigenstates

corresponding to these band structures show that the eigenstates are inverted; by that

we mean that e.g., the eigenstate px (dxy) shown in Fig. ??(b) [??(c)] which appeared

on the lower (upper) band for the shrunken cluster appears on the upper (lower) band

for the expanded cluster as shown in Fig. ??(f) [(e)]. This band inversion indicates

that there is a change in the band topology, as discussed in the previous section on the

tight-binding model.

m > 0

m < 0

x

y
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where v =
p
3t1a0/2 and E is the energy of the eigenstate  .

Consider the geometry shown in Fig. 4(b) of the main text, which shows an area of

shrunken hexagons above expanded hegaons. The system is described by a mass which

depends only on y, i.e., m(x, y) = m(y) and m(0) = 0 with

dm

dy
< 0. (21)

In this case, the topologically protected solution

 (y) = � exp

✓
1

~v

Z y

0

m(y0)dy0
◆
, (22)

is an x-independent solution of the Dirac equation with zero energy where � is a two-

dimensional spinor. This is the celebrated Jackiw-Rebbi solution of the Dirac equation

with a spatially varying mass [?]. The sign in the exponent of  [Eq. (??)] ensures that

the solution is normalizable. The edge state decays exponentially for both y > 0 and

y < 0. The spinor � obeys

�x� = �. (23)
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in the (|p+i, |d+i)T basis. The full edge mode is described by
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Again, plugging into the Dirac equation gives an energy dispersion

E(kx) = �~vkx. (26)

Since the group velocity is given by v = 1
~
@E
@kx

, this represents an edge state travelling

in the �x-direction. Indeed, we see that in Fig. 4(b-i) of the main text, the excitation

of the +-pseudospin leads to a left-moving edge state. Similarly, an edge state derived

from the H� channel (opposite pseudo-spin) would travel in the +x-direction.

7.5. Inversion of the Eigenstates

We examine the out-of-plane magnetic field eigenstates of the system at the symmetry

plane (z = 0) corresponding to the � point for the shrunken and expanded clusters. The

band structures for the shrunken and expanded cluster systems are shown in Fig. ??(a)

and (d) and are the same as Fig. 2(c) and (e) in the main text. The eigenstates

corresponding to these band structures show that the eigenstates are inverted; by that

we mean that e.g., the eigenstate px (dxy) shown in Fig. ??(b) [??(c)] which appeared

on the lower (upper) band for the shrunken cluster appears on the upper (lower) band

for the expanded cluster as shown in Fig. ??(f) [(e)]. This band inversion indicates

that there is a change in the band topology, as discussed in the previous section on the

tight-binding model.
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where v =
p
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corresponding to these band structures show that the eigenstates are inverted; by that

we mean that e.g., the eigenstate px (dxy) shown in Fig. ??(b) [??(c)] which appeared

on the lower (upper) band for the shrunken cluster appears on the upper (lower) band

for the expanded cluster as shown in Fig. ??(f) [(e)]. This band inversion indicates
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bound state in y-direction, propagating in x direction



Band inversion: numerical simulation

✓ Bulk/edge correspondence: We expect topological edge states 
to appear at the interface between expanded/shrunken system



helical/chiral topological edge states
✓  Interface between two distinct band structure

✓  Topological edge state appear in the bulk gap 

✓2D version/topological version of Lodahl/Rauschenbeutel

✓ different polarization propagate 
in different directions 

✓ robustness against deformation of edge

S. Barik, H. Miyake, W. DeGottardi, E. Waks, M.H. NPJ (2016)

✓ confinement in perp. direction

PFC collaboration with Edo Waks
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Experimental realization of 

Topological photonic crystals



 

To show the presence of the guided edge mode, we measure the transmission spectrum. We               
illuminate the left grating (L) with a 780 nm continuous-wave laser using a pump power of                
1.3μW, and collect the emission from the right grating (R) (see Fig.2A). At this power the                
quantum dot ensemble emission becomes a broad continuum due to power broadening, resulting             
in an internal white light source that spans the wavelength range of 900-980 nm. Fig. 2B shows                 
the spectrum at the right grating, presented with the band structure simulation (21). Light              
emitted within the topological band efficiently transmits through the edge mode and propagates             
to   the   other   grating   coupler,   while   photons   outside   of   the   bandgap   dissipate   into   bulk   modes. 

 
Fig.2  :  Transmission characteristics of the topological waveguide.  (A) A schematic of the             
excitation scheme identifying the three relevant regions.  (B) Simulated band structure of            
transverse electromagnetic modes of a straight topological waveguide. The grey region           
corresponds to bulk modes of the individual topological photonic crystals and red lines represent              
modes within the bandgap corresponding to topological edge states. The adjacent panel shows             
the measured spectrum at the transmitted end of the waveguide. The shaded region identifies the               
topological edge band.  (C) Transmission spectrum at grating L as a function of the excitation               
laser   position.  
 
To confirm that the emission originates from guided modes at the interface between the two               
topological materials, we excite the structure in the middle of the waveguide (M), and collect the                
emission at the left grating coupler. Fig. 2C shows the transmission spectrum as a function of the                 
laser spot position as we scan the laser along the  y -axis across the interface. The spectrum attains                 
a maximum transmission within the topological band when the pump excites the center of the               
structure. When we displace the beam, by approximately 1.5 microns, the transmission vanishes,             
indicating   that   the   photons   are   coming   only   from   the   waveguide.  
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780nm excitation with 1.3 uW power
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Transmission characteristics of the topological waveguide 
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Compare with 1D: 

Lodahl/Rauschenbeutel/Zoller Nature (2017)

Science, 359, 666 (2018)
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Outlook: Chiral quantum optics

• location independent coupling  

• Chiral coupling overcomes the 
inhomogeneity of emitter 
locations: large entanglement


• Topology provides an added 
robustness   
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Fig. 1. (a) Schematic of a 2D lattice of coupled ring resonators implementing the integer
quantum-Hall model. Site resonators (black) are coupled using link resonators (grey). The
lattice is coupled to input and output waveguides. Edge states transport is confined along
the lattice boundary whereas the bulk states follow different paths through the bulk of the
lattice. A time-bin entangled photon pair is coupled to the lattice at input and the output
temporal correlations are examined. An example single photon temporal wavefunction and
the two-photon correlation function is shown at the input and the output. (b) A vertical
shift of link resonator introduces direction dependent hopping phase and hence synthetic
magnetic field for photons. Photons hopping along right experience a longer path and hence
an extra phase compared to photons hopping along left. (c) Single-photon transmission
spectrum (solid red line) for a pure 8×8 lattice. CW, CCW Edge and bulk bands are shaded
in green, red and blue, respectively. In this paper, we use the input/output coupling rate to
be same as the coupling rate J between site resonators.

where ω0 is the ring resonance frequency, J is the coupling rate between neighboring lattice sites
and φ is the synthetic magnetic flux threading a single plaquette. â†

x,y and âx,y are the photon
creation and annihilation operators, respectively, at the lattice site (x,y). We have specifically
chosen the Landau gauge where the magnetic phase is associated only with hopping along
x-direction and it is a linear function of the row index y. For simplicity, we choose ω0 = 0.
Moreover, to elucidate the topological protection of edge states against disorder, we neglect
the effect of loss in the resonators which can lead to decoherence of the entangled state, in
addition to disorder. Also, in experimental realization of this system, the effect loss is very
small compared to that of disorder [4, 20].

Figure 1(c) shows the simulated single-photon transmission spectrum for a 8×8 lattice, with
a magnetic flux φ = 2π

4 per plaquette. The transmission spectrum is divided into bulk bands
separated by edge bands [24]. The edge bands (shaded in green and red) are associated with
topologically non-trivial edge states circulating clockwise (CW) and counterclockwise (CCW)
along the system boundary. On the other hand, states in the bulk band (shaded in blue) occupy
the bulk of the lattice [3, 4].

At the input of this lattice, we couple a time-bin entangled two-photon state of the form
|ψ⟩ =

∫ ∞
− ∞

∫ ∞
− ∞ dt1dt2ψ(t1, t2; te, tl)â†(t1)â†(t2) |0⟩ ,where(te) and (tl) correspond to the early

and late time bins in which the photons could arrive and â†(t) is the photon creation
operator at time t. ψ(t1, t2; te, tl) is the two-photon temporal wavefunction and is symmetric
under exchange of photons. Note that both the photons are centered around the same carrier
frequency and have same polarization, in the plane of ring resonators. Here, we consider
the maximally entangled states - the Bell states. For example, the Ψ+ state is written as
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sub-wavelength correlations [57, 58].

As the electron-hole pair approaches the edge, the sit-
uation changes dramatically because these states exhibit
electronic coherence that extends across the entire sam-
ple. Furthermore, due to the magnetic field, the edge
states carry a large angular momentum, which can be
partially transferred into the optical radiation during
emission. Such a transfer process is necessarily associ-
ated with the presence of higher order multipole moments
in the far-field radiation. To illustrate this point more
concretely, we consider a cylindrically symmetric edge,
where the multipole radiation pattern can be calculated
analytically. We represent the magnetic vector potential
in the symmetric gauge A0 = Bz(�y, x)/2, where Bz

is the perpendicular magnetic field and (x, y) are the in-
plane coordinates of the 2DES. In this gauge, the angular
momentum is a good quantum number and we can or-
der the single-particle states in the nth Landau level into
eigenstates |n, mi (m � � |n|) of the angular momentum
operator Lz/~ = xky � ykx with eigenvalue �m, where
k = (kx, ky) is the in-plane wavevector.

To describe the spontaneously emitted field, we also
decompose the optical field into eigenstates of Lz with
orbital angular momentum (OAM) ~` and longitudinal
momentum ~k. Such states are known as cylindrical vec-
tor harmonics and are closely related to the cylindrically
symmetric Laguerre-Gaussian modes within the paraxial
approximation [59]. An electron in the conduction band
with angular momentum m can conserve total angular
momentum by recombining with a hole in the valence
band with angular momentum m

0 and emitting light with
OAM ` = m�m

0 [see Fig. 1(b)]. In the supplemental ma-
terial, we give a gauge independent derivation of this se-
lection rule [60]. We remark that these arguments should
generally apply to integer quantum Hall systems, as well
as other materials with topological edge states. Focus-
ing on quantum Hall systems in Dirac materials, we now
discuss these e↵ects from a more microscopic picture.

Dirac Model.—The low-energy Hamiltonian in a 2D
material with an underlying hexagonal lattice takes the
Dirac form in each valley (neglecting spin), H = ~v k ·
⌧ + m0v

2
⌧z, where v is the Dirac velocity, k = (kx, ky)

is the in-plane wavevector, ⌧ = (⌧x, ⌧y, ⌧z) are Pauli ma-
trices operating on the Dirac pseudospin, and m0 is the
e↵ective Dirac mass. At zero magnetic field the spec-
trum of H is E(k) = ±

p
m

2
0v

4 + v2|k|2, as shown in
Fig. 1(a). For large Bz, the energy spectrum is quan-
tized into degenerate Landau levels at energies En =
sign(n)

p
m

2
0v

4 + ~2!2
c |n|, where n is an integer, !c =p

2v/`c is the cycolotron frequency, and `c =
p

~/eBz is
the magnetic length. Throughout this work we restrict
our discussion to the K-valley for simplicity and neglect
inter-valley scattering processes.

Consider the interaction of this system with an ex-
ternal optical field. The light-matter interaction can be

2DESB

(a) E

m

EF

Bulk

Ev

Ec

m
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EF
. . .

` = �m

...

...

Edge
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Ec

(b)

2DESB

Radiation Radiation

FIG. 1: (a) In the presence of a large magnetic field, the
electronic states of the 2DES are quantized into Landau lev-
els, which we index by their angular momentum �~m. The
majority of the states in the bulk are localized by disorder,
leading to inter-band radiation dominated by dipole emission.
The spectrum of this radiation is spatially correlated with the
disorder potential. Here Ec(v) refer to the energy of the con-
duction (valence) band and EF is the Fermi energy. (b) An
electron excited at the edge of the system can emit light with
orbital angular momentum ~` by recombining with a hole in
the state m0 = m � `. Here we have taken the edge states
in the conduction band to have the opposite slope from the
valence band so that the edge emission is spectrally distin-
guishable from the bulk.

found through the usual prescription k ! k � eA/c

Hint =
evp
2c

[⌧+A
⇤
+(x, y) + ⌧�A

⇤
�(x, y)]e�i!t + h.c., (1)

where A± = (Ax ± iAy)/
p

2 are the circularly polarized
components of the vector potential A in the plane of
the 2D material. Due to the Dirac band structure, the
pseudo-spin operators ⌧± couple the nth Landau level to
both n±1 and �n±1. This leads to the optical selection
rule: n ! n

0 with |n0| = |n| ± 1 [34].
We represent the single-particle states in the symmet-

ric gauge, in which case the eigenstates |n, mi take the
form [61]

hx, y|n, mi /
 

↵n

p
|n|D|n|�1

ū ū
|n|+m

�n

p
2i`cD

|n|
ū ū

|n|+m

!
e
�|u|2/4`2c , (2)

where u = x + iy, Dū = @ū � u/2`
2
c acts as a raising

operator on the Landua level eigenfunctions, (↵0, �0)T =
(0, 1), and, for n > 0 (n < 0), (↵n, �n)T are the positive
(negative) eigenvectors of the 2x2 matrix

Hn =

✓
m0v

2 ~!c

p
|n|

~!c

p
|n| �m0v

2

◆
, (3)

whose eigenvalues are the energy eigenvalues En. We
represent the OAM eigenstates for the optical field in
the basis of cylindrical vector harmonics [59], which take
the form E(x, y, z) =

P
`,k E`,k(r)ei`✓+ikz, where r = |u|

and ✓ = tan�1(y/x).
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FIG. 3: (a) The disorder potential U(x, y) for the inter-band
transitions between Landau levels. (b) U(x, y) can be re-
constructed by correlating the amplitude of spatially-resolved
scattered light with the frequency of the incoming probe. We
took the 2DDM to be embedded in GaP (n0 = 3.2) in a
10 T magnetic field with �0 = 1 µm. The optical imaging is
able to resolve spatial features down to the di↵raction limit
�0/2n0 ⇡ 160 nm.

emission from the localized states in the bulk of the 2D
material at integer filling. In particular, we show that the
disorder landscape can be reconstructed through optical
imaging of the scattered light. We can include disorder
in the Dirac model by adding all terms consistent with
the symmetries of the hexagonal lattice (neglecting inter-
valley scattering) [61]

Hdis = u0(r)I + u(r) · ⌧ . (4)

The first term u0 corresponds to long range diagonal dis-
order arising from, e.g., charged impurities, while the
other terms are associated with shorter range e↵ects such
as, e.g., variations in the two sub-lattice potentials (uz),
tunneling rates (ux,y), or the presence of vacancies and
defects.

The projection of Hdis into the Landau levels leads
to smoothing of the disorder on the scale of `c. This
produces a potential landscape for each Landau level
Un(x, y) = hx, y|Tr⌧ (PnHdisPn)|x, yi, where Pn is a pro-
jector into the nth Landau level and Tr⌧ traces over the
pseudospin states. This landscape gives rise to (1) an adi-
abatic shift of the edge position and (2) localized states
in the bulk. Thus, the edge multipole e↵ects remain the
same, while the bulk radiation becomes dominated by
transitions between localized states, each with a di↵er-
ent spectral signature [see Fig. 1(a)].

To see how these spectral signatures can be used to
image the disorder landscape, we consider near resonant
excitation between Landau levels with �+ polarized light
and a probe whose frequency !` is scanned through the
resonance ~!` = ✏n+1 � ✏�n. The disorder in the optical
transition frequency U(x, y) = Un+1(x, y)�U�n(x, y) for
n = 0 is shown in Fig. 3(a). To obtain the spatial pro-
file of emitted light we approximate the far field emis-
sion pattern by a convolution of U(x, y) with the filter
function ⌘�(r) = sin(4⇡r/�)/⇡

2
r
2, which arises from the

di↵raction limit. Here � = [(hn0/c)(✏n+1 �✏�n)]�1 is the
central wavelength of emitted light, and n0 is the index
of refraction of the surrounding substrate. We construct
the disorder potential by finding the probe frequency at
which the local scattered light reaches its maximum am-
plitude. The resulting optically reconstructed disorder
potential is shown in Fig. 3(b). In practice, this recon-
struction will be limited by the numerical aperture NA of
the imaging system. The di↵raction limit in free-space
is NA 1, using, e.g., a solid-immersion-lens, one can
enhance the upper limit of the NA by the index of re-
fraction of the lens [62]. Alternatively, super-resolution
techniques would enable imaging far below the di↵raction
limit [52, 53].

As we are treating the disorder in degenerate, first-
order perturbation theory, we can see from Eq. (3) that,
for massless Dirac Fermions, U(r) is dominated by the ⌧x

disorder, while, for su�ciently massive Dirac fermions,
U(r) is dominated by ⌧z disorder. A related measure-
ment in massive 2DDMs could be used to indirectly map
out the diagonal disorder term u0(r) by going away from
integer filling. In particular, the exciton binding energy
will vary with the local carrier density due to screening
e↵ects. Thus, mapping out the exciton line across the
sample would reveal variations in the local carrier den-
sity, which, in the partially filled, disordered quantum
Hall regime, are directly correlated with the underlying
disorder potential [2, 63].

Electron-Electron Interactions.– In our analysis, we
have largely neglected the e↵ect of electron-electron inter-
actions on both the disorder landscape and the optically
excited electron-hole pair. Near integer filling, the inter-
actions will have a minimal e↵ect on the bare disorder
potential because the electronic state is incompressible
and does not e↵ectively screen the disorder [2, 63].

The dominant e↵ects of the electron-hole interactions
is to lead to Landau level mixing and magnetexciton for-
mation, which have to be considered separately for the
bulk and the edge. On the edge, magnetoxciton e↵ects
are weak because of the predominantly linear dispersion
of the edge states. Landau level mixing can then also be
ignored because the electron and hole are both delocal-
ized and interact weakly. For the bulk, our analysis as-
sumes that the magnetoexciton binding energy ✏b is much
less than the strength of the disorder potential. However,
in the opposite limit of strongly bound excitons, the ⌧
disorder will lead to spatial variations in ✏b. As a result,
we expect our conclusions about mapping the ⌧ disorder
to remain valid in this limit, provided that the disorder
potential contains long-range correlations compared to
the magnetoexciton Bohr radius.

Conclusion.—We have studied the properties of the
optical radiation from integer quantum Hall edge states
in Dirac materials. We showed that the optical emission
from the bulk of the 2DDM reflects the disorder land-
scape and, at the edge, high-order multipole transitions
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FIG. 3: (a) The disorder potential U(x, y) for the inter-band
transitions between Landau levels. (b) U(x, y) can be re-
constructed by correlating the amplitude of spatially-resolved
scattered light with the frequency of the incoming probe. We
took the 2DDM to be embedded in GaP (n0 = 3.2) in a
10 T magnetic field with �0 = 1 µm. The optical imaging is
able to resolve spatial features down to the di↵raction limit
�0/2n0 ⇡ 160 nm.

emission from the localized states in the bulk of the 2D
material at integer filling. In particular, we show that the
disorder landscape can be reconstructed through optical
imaging of the scattered light. We can include disorder
in the Dirac model by adding all terms consistent with
the symmetries of the hexagonal lattice (neglecting inter-
valley scattering) [61]

Hdis = u0(r)I + u(r) · ⌧ . (4)

The first term u0 corresponds to long range diagonal dis-
order arising from, e.g., charged impurities, while the
other terms are associated with shorter range e↵ects such
as, e.g., variations in the two sub-lattice potentials (uz),
tunneling rates (ux,y), or the presence of vacancies and
defects.

The projection of Hdis into the Landau levels leads
to smoothing of the disorder on the scale of `c. This
produces a potential landscape for each Landau level
Un(x, y) = hx, y|Tr⌧ (PnHdisPn)|x, yi, where Pn is a pro-
jector into the nth Landau level and Tr⌧ traces over the
pseudospin states. This landscape gives rise to (1) an adi-
abatic shift of the edge position and (2) localized states
in the bulk. Thus, the edge multipole e↵ects remain the
same, while the bulk radiation becomes dominated by
transitions between localized states, each with a di↵er-
ent spectral signature [see Fig. 1(a)].

To see how these spectral signatures can be used to
image the disorder landscape, we consider near resonant
excitation between Landau levels with �+ polarized light
and a probe whose frequency !` is scanned through the
resonance ~!` = ✏n+1 � ✏�n. The disorder in the optical
transition frequency U(x, y) = Un+1(x, y)�U�n(x, y) for
n = 0 is shown in Fig. 3(a). To obtain the spatial pro-
file of emitted light we approximate the far field emis-
sion pattern by a convolution of U(x, y) with the filter
function ⌘�(r) = sin(4⇡r/�)/⇡

2
r
2, which arises from the

di↵raction limit. Here � = [(hn0/c)(✏n+1 �✏�n)]�1 is the
central wavelength of emitted light, and n0 is the index
of refraction of the surrounding substrate. We construct
the disorder potential by finding the probe frequency at
which the local scattered light reaches its maximum am-
plitude. The resulting optically reconstructed disorder
potential is shown in Fig. 3(b). In practice, this recon-
struction will be limited by the numerical aperture NA of
the imaging system. The di↵raction limit in free-space
is NA 1, using, e.g., a solid-immersion-lens, one can
enhance the upper limit of the NA by the index of re-
fraction of the lens [62]. Alternatively, super-resolution
techniques would enable imaging far below the di↵raction
limit [52, 53].

As we are treating the disorder in degenerate, first-
order perturbation theory, we can see from Eq. (3) that,
for massless Dirac Fermions, U(r) is dominated by the ⌧x

disorder, while, for su�ciently massive Dirac fermions,
U(r) is dominated by ⌧z disorder. A related measure-
ment in massive 2DDMs could be used to indirectly map
out the diagonal disorder term u0(r) by going away from
integer filling. In particular, the exciton binding energy
will vary with the local carrier density due to screening
e↵ects. Thus, mapping out the exciton line across the
sample would reveal variations in the local carrier den-
sity, which, in the partially filled, disordered quantum
Hall regime, are directly correlated with the underlying
disorder potential [2, 63].
Electron-Electron Interactions.– In our analysis, we

have largely neglected the e↵ect of electron-electron inter-
actions on both the disorder landscape and the optically
excited electron-hole pair. Near integer filling, the inter-
actions will have a minimal e↵ect on the bare disorder
potential because the electronic state is incompressible
and does not e↵ectively screen the disorder [2, 63].

The dominant e↵ects of the electron-hole interactions
is to lead to Landau level mixing and magnetexciton for-
mation, which have to be considered separately for the
bulk and the edge. On the edge, magnetoxciton e↵ects
are weak because of the predominantly linear dispersion
of the edge states. Landau level mixing can then also be
ignored because the electron and hole are both delocal-
ized and interact weakly. For the bulk, our analysis as-
sumes that the magnetoexciton binding energy ✏b is much
less than the strength of the disorder potential. However,
in the opposite limit of strongly bound excitons, the ⌧
disorder will lead to spatial variations in ✏b. As a result,
we expect our conclusions about mapping the ⌧ disorder
to remain valid in this limit, provided that the disorder
potential contains long-range correlations compared to
the magnetoexciton Bohr radius.
Conclusion.—We have studied the properties of the

optical radiation from integer quantum Hall edge states
in Dirac materials. We showed that the optical emission
from the bulk of the 2DDM reflects the disorder land-
scape and, at the edge, high-order multipole transitions

Mapping disorder landscape

2

As the electron-hole pair approaches the edge, the situ-
ation changes dramatically compared to the bulk because
the topologically protected edge states can exhibit elec-
tronic coherence that extends across the sample. The
radiation from such an extended object will generically
contain higher order multipole moments when its size ex-
ceeds the wavelength of light. To see this explicitly we
consider a cylindrically symmetric edge, where the mul-
tipole radiation pattern can be directly calculated. We
represent the magnetic vector potential in the symmetric
gauge A0 = Bz(�y, x)/2, where Bz is the perpendicular
magnetic field and (x, y) are the in-plane coordinates of
the 2DES. In this gauge, we can order the single-particle
states in the nth Landau level into eigenstates |n, mi
(m � � |n|) of the canonical angular momentum oper-
ator Lz/~ = xky � ykx with eigenvalue �|n| � m, where
k = (kx, ky) is the in-plane wavevector.

To describe the spontaneously emitted field, we also
decompose the optical field into eigenstates of Lz with
orbital angular momentum (OAM) ~` and longitudinal
momentum ~k. Such states are known as cylindrical vec-
tor harmonics and are closely related to the cylindrically
symmetric Laguerre-Gaussian modes within the paraxial
approximation [43]. In the symmetric gauge, the selec-
tion rules for light with OAM ~` follow directly from con-
servation of total Lz and are given by |n, mi ! |n0

, m
0i,

where |n0| = |n| ± 1 and m
0 = m � `. Here the ±1

term arises from the choice of one of the two circular po-
larizations of the light. The selection rule for n follows
from particle-hole symmetry and is well known for Dirac
systems [31], while the selection rules for m have not
been considered before. In the supplementary material,
we give a gauge independent derivation of these selection
rules [45]. As illustrated in Fig. 1(c), when the electron-
hole pair is excited at the edge of the sample, it can
recombine by emitting light with OAM. To understand
the scaling of the multipole emission with increasing `,
we note that light with OAM ` has on optical vortex
in the center of size greater than or equal to �`, where
� = �/2⇡. As an example, we show the profile of an
` = 100 mode in Fig. 1(d). Beyond this radius, however,
its magnitude is independent of `. This implies that the
emitted light will contain multipole contributions up to
maximum value of `max = re/�, where re is the radius of
the edge.

This analysis illustrates the two basic e↵ects we find
for integer quantum Hall states: the ability to optically
image the disorder landscape and the presence of large
multipole transitions for the edge states. These argu-
ments should generally apply to quantum Hall systems,
as well as other materials with topologically protected ex-
tended electronic states such as those found in the quan-
tum spin-Hall e↵ect or in topological insulators. Focus-
ing on quantum Hall systems in Dirac materials, we now
discuss these e↵ects from a more microscopic picture.
Dirac Model.—The low-energy Hamiltonian in a 2D
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FIG. 1: (a) Low-energy band structure of graphene-like Dirac
material for zero magnetic field. Here m0 and v are the Dirac
mass and velocity, respectively, and we only show one of the
two valleys. (b) In the presence of a large magnetic field, the
electronic states are quantized into Landau levels. Disorder
in the sample leads to spatial variations in the optical transi-
tion energies, which can be optically imaged. (c) An electron
excited at the edge of a cylindrically symmetric sample will
emit light with orbital angular momentum ~` by recombining
with a hole in the state m0 = m � `. (d) Amplitude of the
cylindrical vector harmonic |E`| for ` = 100 with �0 = 600 nm
and index of refraction n0 = 3.2. Because the size of the opti-
cal vortex increases as �`, an edge state with radius re (black
circle) can only spontaneously emit into modes with ` . re/�.

material with an underlying hexagonal lattice takes the
Dirac form (neglecting spin), H = (�1)s~v k·⌧+m0v

2
⌧z,

where s = 0 or s = 1 for the K or K’ valley, respec-
tively, v is the speed of light for the Dirac fermions,
k = (kx, ky) is the in-plane wavevector, ⌧ = (⌧x, ⌧y, ⌧z)
are Pauli matrices operating on the Dirac pseudospin,
and m0 is the e↵ective Dirac mass. At zero magnetic
field the spectrum of H takes the Dirac form E(k) =
±
p

m
2
0v

4 + v2|k|2 as shown in Fig. 1(a). For large per-
pendicular magnetic fields Bz, the energy spectrum of
H is quantized into degenerate Landau levels at ener-
gies En = sign(n)

p
m

2
0v

4 + ~2!2
c |n|, where n is an in-

teger, !c =
p

2v/`c is the cycolotron frequency and
`c =

p
~/eBz is the magnetic length.

Consider the interaction of this system with an ex-
ternal optical field. The light-matter interaction can be
found through the usual prescription k ! k � eA/c

Hint = (�1)s evp
2c

[⌧+A
⇤
+(x, y) + ⌧�A

⇤
�(x, y)]e�i!t + h.c.,

(1)
where A± = (Ax ± iAy)/

p
2 are the circularly polarized

components of the vector potential A in the plane of the
2D material. Due to particle-hole symmetry in H, the
pseudo-spin operators ⌧± couple the nth Landau level to
both n ± 1 and �n ± 1. This leads to the selection ruleM. Gullans, J. Taylor, A. Imamoglu, 
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e.g. Quantum Hall, Rydberg excitations 

Most cases:

dipole approximation 

Multipole emission

evf h1,m0|⌧+A.�|0,mi ! �m0,m+l

(rei✓)m(re�i✓)m
0
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q
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redge = lmaxso the maximum OAM:

usual dipole 

approximation limit
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Radiation from the edge.—We first consider the light
emission from the edge states of the quantum Hall sys-
tem. The edge can either be formed by an external con-
fining potential, at an interface with vacuum or another
material, or from an abrupt change in the local dielectric
environment. An externally applied potential V (r) will
generally lead to a uniform shift En ! En + V (rm). As
a result, the optical transitions between edge states will
be degenerate with the transitions in the bulk. In order
to selectively address the edge states, it is desirable to a
have a di↵erence in dispersion between the edge states in
the conduction and valence bands [see Fig. 1(b)]. Such a
di↵erence in slope can arise at a sharp interface with vac-
uum or another material due to local modifications of the
band structure. In the case of graphene with a vacuum
interface, the dispersion of the quantum Hall edge states
depends on whether the edge termination is of armchair
or zig-zag type [62]. For |n| > 0, however, all edge states
disperse with the opposite sign in the conduction and
valence band, which allows these optical transitions to
be spectrally distinguished from the bulk. This analy-
sis can be generalized to include a Dirac mass and one
finds that the opposite slope of the conduction and va-
lence band is preserved. Alternatively, to avoid defects
associated with a sharp interface, one can consider an
edge formed by a change in the dielectric environment,
e.g., an additional layer of h-BN. In this case, the change
in the dielectric screening will modify the contribution
of electron-electron interactions to the inter-band Lan-
dau level transitions [41]. The adiabatic connection of
the Landau levels between these two regions will lead to
optically addressable edge states.

For the case of a cylindrically symmetric edge, the edge
states are simply given by the angular momentum states
|n, mi with rm ⇠ re, the radius of the edge. As we
noted above, one can achieve optical Raman transitions
between edge states by transferring orbital angular mo-
mentum into the light field. To understand the scaling
of the multipole emission with increasing `, we note that
light with OAM ` has on optical vortex in the center of
size greater than or equal to �`, where � = �/2⇡ [see
Fig. 2(b)]. Beyond this radius, the average intensity of
the light is independent of `. This implies that the emit-
ted light will contain multipole contributions up to the
maximum value `max = re/�, where re is the radius of
the edge. In addition, `max will be cut o↵ by the finite
coherence length of the edge states, which arises primar-
ily from electron-electron interactions and phonon scat-
tering. For integer quantum Hall states in GaAs, the
coherence length was measured via transport methods
to be roughly (10-20) µm [4]. Our work shows that the
multipole radiation provides an optical means to directly
probe the coherence length.

To understand this e↵ect more quantitatively, we de-
compose the radiative emission rate �m of an excited
electron in the state |n + 1, mi into all the multipole mo-
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FIG. 2: (a) Low-energy band structure of graphene-like Dirac
material for zero magnetic field. Here m0 and v are the Dirac
mass and velocity, respectively, and we only show one of the
two valleys. (b) Amplitude of the cylindrical vector harmonic
|E`| for ` = 100 with �0 = 600 nm and index of refraction
n0 = 3.2. Because the size of the optical vortex increases
as �`, an edge state with radius re (black circle) can only
spontaneously emit into modes with ` . re/�. (c) Branching
ratio for spontaneous emission into di↵erent ` modes for two
di↵erent values of re/�. We took Dirac parameters for WSe2
(m0v

2 ⇡ 1 eV and v ⇡ 106 m/s [63]) embedded in GaP,
Bz = 11 T, n = 0, and � = 30 nm.

ments �m =
P

`�0 �
`
m [64]. Each individual component

can be found using Fermi’s golden rule for the emission
into the free space modes with a specified `. We give the
matrix elements in the supplemental material [60]. Two
illustrative examples are shown in Fig. 2(c) for the n = 0
to n = 1 transition with Dirac parameters for single-
layer WSe2. We plot the branching ratio �

`
m/�m for two

di↵erent edge radii, which confirms the scaling analysis
from above. For re = 1.5 µm we find a nearly uniform
distribution for the spontaneous emission out to ` = 50.
Including disorder will modify shape of the distributions
in Fig. 2(c), but it will not reduce `max, which is simply
a result of the large coherence length of the edge states
compared to �.

These large multipole moments for the quantum Hall
edge states may also be useful for applications that make
use of light with large orbital angular momentum [65].
For example, placing the 2DES in a cavity and using
the pumping scheme in Fig. 1(b), would enable lasing
with orbital angular momentum by tuning a Laguerre-
Gaussian mode of the cavity into resonance with the as-
sociated Raman transition for the edge state.
Radiation from the bulk.— We now consider the optical

emission from the localized states in the bulk of the 2D
material. In particular, we show that the disorder land-
scape can be reconstructed through optical imaging of
the scattered light. For simplicity, we consider circularly

2⇡redge/� = 50

2⇡redge/� = 3

multipole emission

2

sub-wavelength correlations [57, 58].

As the electron-hole pair approaches the edge, the sit-
uation changes dramatically because these states exhibit
electronic coherence that extends across the entire sam-
ple. Furthermore, due to the magnetic field, the edge
states carry a large angular momentum, which can be
partially transferred into the optical radiation during
emission. Such a transfer process is necessarily associ-
ated with the presence of higher order multipole moments
in the far-field radiation. To illustrate this point more
concretely, we consider a cylindrically symmetric edge,
where the multipole radiation pattern can be calculated
analytically. We represent the magnetic vector potential
in the symmetric gauge A0 = Bz(�y, x)/2, where Bz

is the perpendicular magnetic field and (x, y) are the in-
plane coordinates of the 2DES. In this gauge, the angular
momentum is a good quantum number and we can or-
der the single-particle states in the nth Landau level into
eigenstates |n, mi (m � � |n|) of the angular momentum
operator Lz/~ = xky � ykx with eigenvalue �m, where
k = (kx, ky) is the in-plane wavevector.

To describe the spontaneously emitted field, we also
decompose the optical field into eigenstates of Lz with
orbital angular momentum (OAM) ~` and longitudinal
momentum ~k. Such states are known as cylindrical vec-
tor harmonics and are closely related to the cylindrically
symmetric Laguerre-Gaussian modes within the paraxial
approximation [59]. An electron in the conduction band
with angular momentum m can conserve total angular
momentum by recombining with a hole in the valence
band with angular momentum m

0 and emitting light with
OAM ` = m�m

0 [see Fig. 1(b)]. In the supplemental ma-
terial, we give a gauge independent derivation of this se-
lection rule [60]. We remark that these arguments should
generally apply to integer quantum Hall systems, as well
as other materials with topological edge states. Focus-
ing on quantum Hall systems in Dirac materials, we now
discuss these e↵ects from a more microscopic picture.

Dirac Model.—The low-energy Hamiltonian in a 2D
material with an underlying hexagonal lattice takes the
Dirac form in each valley (neglecting spin), H = ~v k ·
⌧ + m0v

2
⌧z, where v is the Dirac velocity, k = (kx, ky)

is the in-plane wavevector, ⌧ = (⌧x, ⌧y, ⌧z) are Pauli ma-
trices operating on the Dirac pseudospin, and m0 is the
e↵ective Dirac mass. At zero magnetic field the spec-
trum of H is E(k) = ±

p
m

2
0v

4 + v2|k|2, as shown in
Fig. 1(a). For large Bz, the energy spectrum is quan-
tized into degenerate Landau levels at energies En =
sign(n)

p
m

2
0v

4 + ~2!2
c |n|, where n is an integer, !c =p

2v/`c is the cycolotron frequency, and `c =
p

~/eBz is
the magnetic length. Throughout this work we restrict
our discussion to the K-valley for simplicity and neglect
inter-valley scattering processes.

Consider the interaction of this system with an ex-
ternal optical field. The light-matter interaction can be

2DESB

(a) E

m

EF

Bulk

Ev

Ec

m

E

EF
. . .

` = �m

...

...

Edge

Ev

Ec

(b)

2DESB

Radiation Radiation

FIG. 1: (a) In the presence of a large magnetic field, the
electronic states of the 2DES are quantized into Landau lev-
els, which we index by their angular momentum �~m. The
majority of the states in the bulk are localized by disorder,
leading to inter-band radiation dominated by dipole emission.
The spectrum of this radiation is spatially correlated with the
disorder potential. Here Ec(v) refer to the energy of the con-
duction (valence) band and EF is the Fermi energy. (b) An
electron excited at the edge of the system can emit light with
orbital angular momentum ~` by recombining with a hole in
the state m0 = m � `. Here we have taken the edge states
in the conduction band to have the opposite slope from the
valence band so that the edge emission is spectrally distin-
guishable from the bulk.

found through the usual prescription k ! k � eA/c

Hint =
evp
2c

[⌧+A
⇤
+(x, y) + ⌧�A

⇤
�(x, y)]e�i!t + h.c., (1)

where A± = (Ax ± iAy)/
p

2 are the circularly polarized
components of the vector potential A in the plane of
the 2D material. Due to the Dirac band structure, the
pseudo-spin operators ⌧± couple the nth Landau level to
both n±1 and �n±1. This leads to the optical selection
rule: n ! n

0 with |n0| = |n| ± 1 [34].
We represent the single-particle states in the symmet-

ric gauge, in which case the eigenstates |n, mi take the
form [61]

hx, y|n, mi /
 

↵n

p
|n|D|n|�1

ū ū
|n|+m

�n

p
2i`cD

|n|
ū ū

|n|+m

!
e
�|u|2/4`2c , (2)

where u = x + iy, Dū = @ū � u/2`
2
c acts as a raising

operator on the Landua level eigenfunctions, (↵0, �0)T =
(0, 1), and, for n > 0 (n < 0), (↵n, �n)T are the positive
(negative) eigenvectors of the 2x2 matrix

Hn =

✓
m0v

2 ~!c

p
|n|

~!c

p
|n| �m0v

2

◆
, (3)

whose eigenvalues are the energy eigenvalues En. We
represent the OAM eigenstates for the optical field in
the basis of cylindrical vector harmonics [59], which take
the form E(x, y, z) =

P
`,k E`,k(r)ei`✓+ikz, where r = |u|

and ✓ = tan�1(y/x).

higher orbital angular 
momentum emission

Solutions of Maxwell’s equations are 

given by Bessel functions: 

l = 0 l = 10 l = 25
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Light-induced fractional quantum Hall phases in graphene
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We show how to realize two-component fractional quantum Hall phases in monolayer graphene by
optically driving the system. A laser is tuned into resonance between two Landau levels of graphene
and acts as a e↵ective tunneling term between these states. We study systems with small number
of electrons for filling factor 2/3 using exact-diagonalization. When the lower state is the first
Landau level, we find that tuning the e↵ective tunneling amplitude causes the system to undergo
a phase transition from a spin-singlet phase to a particle-hole conjugate 1/3 Laughlin phase of
the antisymmetric optical dressed states. This phase transition can be traced to the presence of
additional cross interaction terms that arise in the rotating wave approximation. These results pave
the way towards the realization of new phases, as well as the control of phase transitions, in graphene
quantum Hall systems using optical fields and integrated photonic structures.

The fractional quantum Hall (FQH) e↵ect is a fasci-
nating phenomena in condensed matter physics, whereby
electron-electron interaction fully determine the behav-
ior of the system [1–3]. While initial considerations fo-
cused on systems with no internal degrees of freedom,
later it was realized that the electron spin plays an im-
portant role for several filling factors [4–7], which was
confirmed experimentally [8, 9]. More generally, mul-
ticomponent FQH phases [10] occur in numerous sys-
tems, where the role of the internal degree of freedom
is ascribed to subbands, such as in wide quantum wells
[11–14], layers, such as in double quantum wells [15, 16],
or the valley quantum number, such as in AlAs quan-
tum well [17] and graphene [18–20]. In particular, there
has been much e↵ort towards engineering various system
parameters, such as tunneling, to realize di↵erent FQH
states. However, these approaches can add unwanted side
e↵ects, and therefore, it is desirable to investigate other
control methods.

At the same time, there has been many theoretical [21–
24] and experimental [25–28] studies of the interaction of
light with quantum Hall states of graphene. In particu-
lar, due the linear dispersion in graphene, the Landau
levels (LL) are not equidistant, unlike semiconductors
with a parabolic dispersion [29]. This makes it possi-
ble to selectively couple LLs with resonant light. More
recently, FQH phases in integrated GaAs quantum well-
cavity structures have also been explored experimentally
[30].

In this Letter, we explore the possibility of using light
to control multicomponent FQH phases of graphene.
Resonant excitation by light results in an e↵ective tun-
neling between two LL, with a rate proportional to the
amplitude of the electric field. The optical driving results
in the formation of dressed states of LL orbits. Conse-

FIG. 1: (a) A single layer of of graphene driven by a light
with Rabi frequency coupling ⌦. (b) LL structure with partial
filling and optical transitions between 0� 1 and 1� 2 states.
(c) Formation of the dressed states due to the light coupling
between two LLs.

quently, the Coulomb interaction terms between di↵er-
ent LLs, which are usually ignored due to the negligible
population of the higher LLs, become important. These
terms come in two categories: (1) direct terms, which
are the counterpart of inter-layer interaction in bilayer
systems [31–33], and (2) cross terms, which are absent
in conventional bilayer systems. The latter terms further
turn out to be crucial in understanding how our system
deviates from the usual bilayer systems. We numerically
study the case of ⌫ = 2/3 filling on a torus and find
that, when the e↵ective tunneling rate is large, the sys-
tem forms a Laughlin state out of the dressed LL orbitals.
This is the case for all values of tunneling we considered
for LL0�LL1 transitions. In contrast, for the LL1�LL2

transition with a small e↵ective tunneling rate, the cross
terms in the Coulomb interaction compete with the en-
ergy separation of the dressed states and force the system
into a many-body singlet state. This state is the result
of the cross Coulomb interaction terms, and therefore,
has infinitesimal overlap with the usual bilayer singlet
[31, 34, 35].
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   Use light to couple two LLs:


(1) Different LL plays the role of layers

(2) Light plays the role of tunneling

• What type of states can one engineer with light?

2

System. In the vicinity of the Dirac K points, mono-
layer graphene is described by the relativistic low-energy
Hamiltonian [31], H⇠

0 = vF
�
⇠⇧x�x +⇧y�y

�
, with ⇠ = ±

the valley index, and �i Pauli matrices acting on sub-
lattice spinors. The presence of a perpendicular mag-
netic field is accounted for by minimal coupling, ⇧ =
p+eA(r)/c, with A(r) the static vector potential, giving
rise to Landau quantization. In the following we will re-
strict ourselves to a single valley, ⇠ = +, and assume that
the electron spin is fully polarized by the magnetic field.
The single-particle states are then given by spinors of the
form  �,n,j(z) = (��C�

n �n�1,j(z), C+
n �n,j(z))

T
, where

C±
n =

q�
1± �n,0

�
/2 are coe�cients, z = x� iy are spa-

tial coordinates, and �n,j(z) are the (gauge-dependent)
non-relativistic Landau level (LL) wave functions, char-
acterized by the LL index n � 0, and a second quan-
tum number j � 0. In symmetric gauge, j specifies
the z-component of angular momentum, while in Landau
gauge, it defines momentum along one direction in the
plane. In graphene, a third quantum number � = ±, dis-
tinguishes between states at positive and negative energy,
E�,n = �!c

p
n, where !c =

p
2vF/lB and lB =

p
c/eB is

the magnetic length. In what follows, we drop the index
� as we will assume � = +, without loss of generality.
For our purpose, a crucial feature of graphene is its

non-uniform LL gap which makes it possible to reso-
nantly couple between selected LLs using light. As il-
lustrated in Fig. 1(a,b), we consider a coupling between
the partially filled n = M level at the Fermi surface to
the empty LL n = M + 1, described by (~ = 1):

Hcoup =
X

j,j0

⌦j,j0(t)c
†
M+1,jcM,j0 +H.c.. (1)

Here, c†M,j and cM,j are the creation and annihila-
tion operators in LLM with the (angular) momen-
tum quantum number j. For simplicity, we as-
sume a plane wave drive, which acts uniformly on
all orbitals: ⌦j,j0(t) = 2⌦�j,j0 cos(!t), with ! the
drive frequency, and the Rabi frequency ⌦ taken to
be real. Within the rotating frame, transformed to

by U = exp
h
�

i
2!t

P
j

⇣
c†M,jcM,j � c†M+1,jcM+1,j

⌘i
, a

rotating-wave approximation (RWA) removes the time-
dependence from the coupling. The e↵ective single par-
ticle Hamiltonian then reads

Hsp =
X

j

�
�

2
⌧ (j)z + ⌦⌧ (j)x , (2)

with � the detuning of the light from the LL reso-
nance, i.e. � = EM+1 � EM � !. The notation of

Eq. (2), using Pauli operators ⌧ (j)z ⌘ |M, ji hM, j| �

|M + 1, ji hM + 1, j|, and ⌧ (j)x ⌘ |M, ji hM + 1, j| +
|M + 1, ji hM, j|, captures the analogy to a spin-1/2 sys-
tem, if the n quantum number is interpreted as the z-

component of spin, or to a bilayer system if n is as-
sociated with a layer index. The first term in Eq. (2)
corresponds to a Zeeman term (in the spin picture),
while the second term can be seen an interlayer tun-
neling (in the bilayer picture). In our approach, both
terms are widely tunable independently from each other.
The single-particle eigenstates are dressed LLs at ener-

gies ±⌦̃ = ±

q
�2

4 + ⌦2, see Fig. 1(c). While strong cou-

pling and/or far detuning lead to polarization in the lower
dressed level, both manifolds can be occupied if the gap
between dressed states becomes small compared to the
interaction strength, e2/✏lB , i.e. if both ⌦ and � are
su�ciently small. Note that we estimate below that the
thermalization of the system in the rotating frame Hamil-
tonian is valid for ⌦ > 10�4 in units of e2/~✏lB , while
the observed phase transitions occur near ⌦ ⇠ 10�2 in
these units.

Applying the RWA to the interactions, the full many-
body Hamiltonian reads H = Hsp +Hint, where

Hint =
X

{n,j}

An1,j1,n2,j2
n3,j3,n4,j4

�n1+n2,n3+n4c
†
n1,j1

c†n2,j2
cn3,j3cn4,j4 ,

(3)

where interaction matrix elements An1,j1,n2,j2
n3,j3,n4,j4

are the
same as without light, but the RWA enforces conserva-
tion of single-particle energy, i.e. �n1+n2,n3+n4 .

Results. Before numerically solving H for small sys-
tems, we gain some intuition by decomposing the inter-
actions into Haldane pseudopotentials [32]. These pseu-
dopotentials describe the interaction strength Vj of two
particles at fixed relative angular momentum j and fixed
center-of-mass angular momentum J , both being con-
served in a rotationally invariant potential. In our case,

we distinguish between intra-layer processes V (n)
j within

LLn, and inter-layer processes, V "#,#"
j and V "#,"#

j , where
the index " (#) shall denote the LLM+1 (LLM ). Clearly,

the di↵erence between V (M+1)
j and V (M)

j breaks the Z2

symmetry which is usually present in a system of two
equivalent layers, but, as seen from Fig. 2(a), this break-
ing happens to be weak. Note therefore that the strongest

n-dependence occurs in V (n)
0 , but only potentials at odd

j contribute to the intra-LL scattering of fermions. A
more important di↵erence to standard bilayer systems,
though, stems from the presence of exchange-type inter-
action V "#,"#

j where scattering particles exchange their
LL index, while in other bilayer systems inter-layer in-
teractions are restricted to the density-density-type in-
teractions V "#,#"

j . It is convenient to account for both
types of inter-LL processes using a single pseudopoten-
tial V inter

j . Therefore we switch to a singlet/triplet basis,
|±i ⇠ |"#i± |#"i, where the corresponding pseudopoten-
tials are V ±

j = (V "#,#"
j ± V "#,"#

j )/2. Since |+i is even
under exchange of particles, it requires odd j, while the
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�n1+n2,n3+n4 , so only the following Haldane pseudopotentials will be present: intra-level pseudopotentials V "
m ⌘ V

"",""
m

and V
#
m = V

##,##
m , as well as inter-level pseudopotentials V k

m ⌘ V
"#,#"
m = V

#","#
m and V

⇥
m ⌘ V

"#,"#
m = V

#",#"
m . In terms

of these pseudopotentials, the interaction Hamiltonian reads:

V̂ =
X

M

"
X

m odd

�
V

"
m |mM, ""i hmM, ""|+ V

#
m |mM, ##i hmM, ##|

�
+

X

m

V
k
m (|mM, "#i hmM, "#|+ |mM, #"i hmM, #"|) +

X

m

V
⇥
m (|mM, "#i hmM, #"|+ |mM, #"i hmM, "#|)

#
. (S13)

There are two main di↵erences to conventional bilayer (or spin) systems: First, there are two di↵erent intra-level
pseudopotentials. This breaks Z2 symmetry present in systems of equivalent layers. Second, the inter-level interactions

do not only consist of density-density-interactions, V k
m, but also contain exchange interactions, V ⇥

m , usually not present
in bilayer or spin systems. Regarding the first di↵erence we note that, as seen in Fig. 2(a) in the main text, the di↵erent
intra-level pseudopotentials di↵er strongly only at m = 0. Since only odd values of m contribute to the fermionic
system, we expect only a weak e↵ect of this Z2 symmetry breaking.
In order to capture the role of the exchange interactions, we introduce a spin basis in terms of singlet and triplet

configurations:

|+i = 1p
2
(|"#i+ |#"i) ,

|�i = 1p
2
(|"#i � |#"i) .

Re-writing Eq. (S13) in this basis, we get

V̂ =
X

M

"
X

m odd

V
"
m

�
|mM, ""i hmM, ""|+ V

#
m |mM, ##i hmM, ##|

�
+

X

m odd

h
V

k
m + V

⇥
m

i
|mM,+i hmM,+|+

X

m even

h
V

k
m � V

⇥
m

i
|mM,�i hmM,�|

#
. (S14)

We see that symmetry demands to the wave function allow to give up the distinction between V
k
m and V

⇥
m if we define

the inter-level interaction as

V
inter

m =

(
V

k
m + V

⇥
m if m is odd,

V
k
m � V

⇥
m if m is even.

(S15)

This allows to directly compare the inter-level interactions in Eq. (S13) with models characterized by a single inter-
layer interaction (i.e. models relevant for bilayer or spin systems). As seen in Fig. 2(b), V inter

1
rather than V

inter

0

becomes the dominant contribution, when the first and the second graphene LL are coupled. As we have shown by
explicit numerics in the main text, this will result in the formation of singlet ground states, or even of quantum Hall
phases which are derived from a hollow-core model (i.e. V

inter

m / �m,1 and V
intra

m / �m,1), like the Haldane-Rezayi
phase.

FORMS OF THE TRIAL WAVE FUNCTIONS

In this section we briefly review the form of the trial wave functions considered in this work for both ⌫ = 1/2
and ⌫ = 2/3 fillings. The simplest two component wave functions belong to Halperin (m,m,n) family [15] and have
Abelian excitations:

 (m,m,n) ({zi}, {wi}) =
Y

i<j

(zi � zj)
m
Y

i<j

(wi � wj)
m
Y

i,j

(zi � wj)
n
, (S16)

where zi and wi are complex coordinates of the electrons for two components, i = 1 . . . N
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and Gaussian factor
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is implicitly assumed in all formulas in this section. For filling 1/2 the candidate
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There are two main di↵erences to conventional bilayer (or spin) systems: First, there are two di↵erent intra-level
pseudopotentials. This breaks Z2 symmetry present in systems of equivalent layers. Second, the inter-level interactions

do not only consist of density-density-interactions, V k
m, but also contain exchange interactions, V ⇥

m , usually not present
in bilayer or spin systems. Regarding the first di↵erence we note that, as seen in Fig. 2(a) in the main text, the di↵erent
intra-level pseudopotentials di↵er strongly only at m = 0. Since only odd values of m contribute to the fermionic
system, we expect only a weak e↵ect of this Z2 symmetry breaking.
In order to capture the role of the exchange interactions, we introduce a spin basis in terms of singlet and triplet

configurations:
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We see that symmetry demands to the wave function allow to give up the distinction between V
k
m and V

⇥
m if we define

the inter-level interaction as

V
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m =
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k
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m if m is odd,
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m if m is even.

(S15)

This allows to directly compare the inter-level interactions in Eq. (S13) with models characterized by a single inter-
layer interaction (i.e. models relevant for bilayer or spin systems). As seen in Fig. 2(b), V inter

1
rather than V

inter

0

becomes the dominant contribution, when the first and the second graphene LL are coupled. As we have shown by
explicit numerics in the main text, this will result in the formation of singlet ground states, or even of quantum Hall
phases which are derived from a hollow-core model (i.e. V

inter

m / �m,1 and V
intra

m / �m,1), like the Haldane-Rezayi
phase.

FORMS OF THE TRIAL WAVE FUNCTIONS

In this section we briefly review the form of the trial wave functions considered in this work for both ⌫ = 1/2
and ⌫ = 2/3 fillings. The simplest two component wave functions belong to Halperin (m,m,n) family [15] and have
Abelian excitations:
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where zi and wi are complex coordinates of the electrons for two components, i = 1 . . . N
2

and Gaussian factor
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is implicitly assumed in all formulas in this section. For filling 1/2 the candidate
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There are two main di↵erences to conventional bilayer (or spin) systems: First, there are two di↵erent intra-level
pseudopotentials. This breaks Z2 symmetry present in systems of equivalent layers. Second, the inter-level interactions

do not only consist of density-density-interactions, V k
m, but also contain exchange interactions, V ⇥

m , usually not present
in bilayer or spin systems. Regarding the first di↵erence we note that, as seen in Fig. 2(a) in the main text, the di↵erent
intra-level pseudopotentials di↵er strongly only at m = 0. Since only odd values of m contribute to the fermionic
system, we expect only a weak e↵ect of this Z2 symmetry breaking.
In order to capture the role of the exchange interactions, we introduce a spin basis in terms of singlet and triplet

configurations:

|+i = 1p
2
(|"#i+ |#"i) ,

|�i = 1p
2
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We see that symmetry demands to the wave function allow to give up the distinction between V
k
m and V
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the inter-level interaction as
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(S15)

This allows to directly compare the inter-level interactions in Eq. (S13) with models characterized by a single inter-
layer interaction (i.e. models relevant for bilayer or spin systems). As seen in Fig. 2(b), V inter

1
rather than V

inter

0

becomes the dominant contribution, when the first and the second graphene LL are coupled. As we have shown by
explicit numerics in the main text, this will result in the formation of singlet ground states, or even of quantum Hall
phases which are derived from a hollow-core model (i.e. V

inter

m / �m,1 and V
intra

m / �m,1), like the Haldane-Rezayi
phase.

FORMS OF THE TRIAL WAVE FUNCTIONS

In this section we briefly review the form of the trial wave functions considered in this work for both ⌫ = 1/2
and ⌫ = 2/3 fillings. The simplest two component wave functions belong to Halperin (m,m,n) family [15] and have
Abelian excitations:
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where zi and wi are complex coordinates of the electrons for two components, i = 1 . . . N
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and Gaussian factor
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is implicitly assumed in all formulas in this section. For filling 1/2 the candidate
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6

�n1+n2,n3+n4 , so only the following Haldane pseudopotentials will be present: intra-level pseudopotentials V "
m ⌘ V

"",""
m

and V
#
m = V

##,##
m , as well as inter-level pseudopotentials V k

m ⌘ V
"#,#"
m = V

#","#
m and V

⇥
m ⌘ V

"#,"#
m = V

#",#"
m . In terms

of these pseudopotentials, the interaction Hamiltonian reads:

V̂ =
X

M

"
X

m odd

�
V

"
m |mM, ""i hmM, ""|+ V

#
m |mM, ##i hmM, ##|

�
+

X

m

V
k
m (|mM, "#i hmM, "#|+ |mM, #"i hmM, #"|) +

X

m

V
⇥
m (|mM, "#i hmM, #"|+ |mM, #"i hmM, "#|)

#
. (S13)

There are two main di↵erences to conventional bilayer (or spin) systems: First, there are two di↵erent intra-level
pseudopotentials. This breaks Z2 symmetry present in systems of equivalent layers. Second, the inter-level interactions

do not only consist of density-density-interactions, V k
m, but also contain exchange interactions, V ⇥

m , usually not present
in bilayer or spin systems. Regarding the first di↵erence we note that, as seen in Fig. 2(a) in the main text, the di↵erent
intra-level pseudopotentials di↵er strongly only at m = 0. Since only odd values of m contribute to the fermionic
system, we expect only a weak e↵ect of this Z2 symmetry breaking.
In order to capture the role of the exchange interactions, we introduce a spin basis in terms of singlet and triplet

configurations:

|+i = 1p
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We see that symmetry demands to the wave function allow to give up the distinction between V
k
m and V
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the inter-level interaction as
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(S15)

This allows to directly compare the inter-level interactions in Eq. (S13) with models characterized by a single inter-
layer interaction (i.e. models relevant for bilayer or spin systems). As seen in Fig. 2(b), V inter

1
rather than V

inter

0

becomes the dominant contribution, when the first and the second graphene LL are coupled. As we have shown by
explicit numerics in the main text, this will result in the formation of singlet ground states, or even of quantum Hall
phases which are derived from a hollow-core model (i.e. V

inter

m / �m,1 and V
intra

m / �m,1), like the Haldane-Rezayi
phase.

FORMS OF THE TRIAL WAVE FUNCTIONS

In this section we briefly review the form of the trial wave functions considered in this work for both ⌫ = 1/2
and ⌫ = 2/3 fillings. The simplest two component wave functions belong to Halperin (m,m,n) family [15] and have
Abelian excitations:
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where zi and wi are complex coordinates of the electrons for two components, i = 1 . . . N
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There are two main di↵erences to conventional bilayer (or spin) systems: First, there are two di↵erent intra-level
pseudopotentials. This breaks Z2 symmetry present in systems of equivalent layers. Second, the inter-level interactions

do not only consist of density-density-interactions, V k
m, but also contain exchange interactions, V ⇥

m , usually not present
in bilayer or spin systems. Regarding the first di↵erence we note that, as seen in Fig. 2(a) in the main text, the di↵erent
intra-level pseudopotentials di↵er strongly only at m = 0. Since only odd values of m contribute to the fermionic
system, we expect only a weak e↵ect of this Z2 symmetry breaking.
In order to capture the role of the exchange interactions, we introduce a spin basis in terms of singlet and triplet

configurations:

|+i = 1p
2
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We see that symmetry demands to the wave function allow to give up the distinction between V
k
m and V
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V
inter

m =

(
V

k
m + V

⇥
m if m is odd,
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This allows to directly compare the inter-level interactions in Eq. (S13) with models characterized by a single inter-
layer interaction (i.e. models relevant for bilayer or spin systems). As seen in Fig. 2(b), V inter

1
rather than V

inter

0

becomes the dominant contribution, when the first and the second graphene LL are coupled. As we have shown by
explicit numerics in the main text, this will result in the formation of singlet ground states, or even of quantum Hall
phases which are derived from a hollow-core model (i.e. V

inter

m / �m,1 and V
intra

m / �m,1), like the Haldane-Rezayi
phase.

FORMS OF THE TRIAL WAVE FUNCTIONS

In this section we briefly review the form of the trial wave functions considered in this work for both ⌫ = 1/2
and ⌫ = 2/3 fillings. The simplest two component wave functions belong to Halperin (m,m,n) family [15] and have
Abelian excitations:
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where zi and wi are complex coordinates of the electrons for two components, i = 1 . . . N
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There are two main di↵erences to conventional bilayer (or spin) systems: First, there are two di↵erent intra-level
pseudopotentials. This breaks Z2 symmetry present in systems of equivalent layers. Second, the inter-level interactions

do not only consist of density-density-interactions, V k
m, but also contain exchange interactions, V ⇥

m , usually not present
in bilayer or spin systems. Regarding the first di↵erence we note that, as seen in Fig. 2(a) in the main text, the di↵erent
intra-level pseudopotentials di↵er strongly only at m = 0. Since only odd values of m contribute to the fermionic
system, we expect only a weak e↵ect of this Z2 symmetry breaking.
In order to capture the role of the exchange interactions, we introduce a spin basis in terms of singlet and triplet

configurations:

|+i = 1p
2
(|"#i+ |#"i) ,

|�i = 1p
2
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We see that symmetry demands to the wave function allow to give up the distinction between V
k
m and V
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This allows to directly compare the inter-level interactions in Eq. (S13) with models characterized by a single inter-
layer interaction (i.e. models relevant for bilayer or spin systems). As seen in Fig. 2(b), V inter

1
rather than V

inter

0

becomes the dominant contribution, when the first and the second graphene LL are coupled. As we have shown by
explicit numerics in the main text, this will result in the formation of singlet ground states, or even of quantum Hall
phases which are derived from a hollow-core model (i.e. V

inter

m / �m,1 and V
intra

m / �m,1), like the Haldane-Rezayi
phase.

FORMS OF THE TRIAL WAVE FUNCTIONS

In this section we briefly review the form of the trial wave functions considered in this work for both ⌫ = 1/2
and ⌫ = 2/3 fillings. The simplest two component wave functions belong to Halperin (m,m,n) family [15] and have
Abelian excitations:
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where zi and wi are complex coordinates of the electrons for two components, i = 1 . . . N
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and Gaussian factor
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• Filling factor is

For bilayer: McDonald Haldane PRB (1996)

Recently: Peterson, Barkeshli, Wen, Vaezi, …

Dressed Laughlin ⌦ � e2/lB
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4

Sphere Disk Torus

⌫ = 1/2 0.85 (N = 6) 0.97 0.83 (K = 0)

(HR) 0.75 (N = 8) (N = 6, L = 24) 0.72 (K 6= 0)

0.72 (N = 10) (N = 8)

⌫ = 2/3 0.99 (N = 4) 0.81 (N = 6, L = 18)

(IP) 0.55 (N = 8) 0.63 (N = 8, L = 36)

0.39 (N = 12)

TABLE I. Overlaps of ground states in di↵erent geometries,
for weak LL1�2 coupling (⌦ = 10�3 and � = 0.02), with
HR state (⌫ = 1/2), and with interlayer Pfa�an (IP) state
(⌫ = 2/3). At ⌫ = 2/3, fast decay of the overlap with N
suggests a di↵erent phase, possibly a Fibonacci phase (see
discussion), however we are not aware of unique trial wave
functions to test the overlaps with this phase.

between the layers can transform the (330)-state into a
phase supporting Fibonacci anyons [39]. These anyons
are defined by simple fusion rules, but still allow for
universal quantum computing [42]. Other non-Abelian
phases are obtained via p-type pairing, either between
particles within a layer or between all particles, giving
rise to the intra- and the inter-layer Pfa�an wave func-
tions [40, 41]. Recently, extensive numerical works have
revealed some of these non-Abelian phases if interactions
are properly modified in a bilayer system at ⌫ = 2/3 [45–
47]. In particular, studies on the thin torus [39] as well
as exact numerics [46] point towards a Fibonacci phase if
the short-range contribution to the interlayer interactions
is weakened.
In both coupling scenarios, LL0�1 and LL1�2, ED on

torus and sphere gives clear hints for a hole-conjugate
Laughlin phase when the Rabi frequency is su�ciently
strong. If the Laughlin state is formulated in a dressed
LL basis, overlaps with this state reach close to 1, see
Fig. 3(c,d). As already observed at ⌫ = 1/2, the two
coupling scenarios show di↵erent behavior when ⌦ is de-
creased. Again, while for LL0�1 tuning the Rabi fre-
quency only rotates the spin, a transition into a singlet
phase occurs for LL1�2, see Fig. 3(e,f). In contrast to
⌫ = 1/2, where the transitions occurs between two gap-
less phases, we now observe a transition between gapped
phases, and the gap vanishes only at the critical point,
see Fig. 3(b). Also, at ⌫ = 2/3, the transition does not
a↵ect the symmetry of the ground state (K = (0, 0) on
both sides).
The identification of the singlet phase at weak LL1�2

coupling is challenging. First let us note that on the
sphere, where our numerics extend up to 12 electrons,
we find large gaps for N = 8 and N = 12, but tiny gaps
for N = 6 and N = 10, suggesting a tetra-periodic be-
havior of the system. While an intralayer Pfa�an state,
requiring mod(N, 4) = 0, would explain this pattern, the
overlap with this state is found to be zero (for N = 8 on
the sphere and the disk). In contrast, significant overlaps
are obtained with the interlayer Pfa�an state (see Table

FIG. 3. (a,b) Energy levels (above ground state in units
of e2/✏lB) vs. Rabi frequency ⌦, for coupling LL0�1 (a),
and LL1�2 (b). (c,d) Ground state overlaps with trial wave
functions (particle-hole conjugate 1/3 Laughlin state and a
singlet phase obtained from hollow-core model). Trial states
are constructed in three di↵erent bases: (1) LL basis. All
the electrons reside in the lower LL. (2) Dressed basis. All
electrons reside in lower eigenstates of Eq. (2), i.e. |ji /�
�
p
�2 + 4⌦2

�
|M+1, ji+2⌦|M, ji. (3) Antisymmetric basis.

All electrons reside in the singlet state, i.e., |ji / �|M +

1, ji + |M, ji. (e,f) Spin polarization S↵ = 1
2N

P
jh
P

j ⌧
(j)
↵ i

of the ground state vs. ⌦ for LL0�1 (e), and LL1�2 (f). Data
in all panels (a–f) was obtained for 8 electrons on the torus,
and � = 0.02.

I). However, the corresponding (3q)-fold torus degener-
acy is not seen for 8 or 10 electrons. Lacking obvious
ground state degeneracies beyond the q-fold center-of-
mass degeneracy, an Abelian phase such as Jain’s spin-
singlet state seems possible [3, 48, 49], but only infites-
imal overlap is found. Given the relative weakness of
V inter
0 , we shall also consider the Fibonacci phase which

on the torus it is characterized by 2q ground states at
K = (0, 0) [46]. While we obtain the second and the
third state at K = (0, 2) and K = (2, 0) on an isotropic
torus, squeezing the torus changes this pattern, and the
lowest two eigenstates indeed happen to be singlets at
K = (0, 0). Moreover, they have large overlaps with the
corresponding eigenstates of the hollow-core Hamiltonian
(0.76 and 0.81 on an isotropic torus), previously identi-
fied as representatives of the Fibonacci phase [46]. This
makes the Fibonacci phase more likely than other can-
didate phases, although a final conclusion is impossible
based on the available numerical results.

Thermalization. In this work, we have assumed that
the electronic system thermalizes to the ground state in
the rotating frame of the optical drive field. To esti-
mate the validity of this approximation, we have to com-
pare the timescale for relaxation of the optically excited
Landau levels to the timescale for thermalization of the
electronic system with the lattice. The carrier lifetime
of optically excited Landau levels has contributions from
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